CT5707 ¥t ArE=lmo1rEdsgs

f))/o}\eut

The purpose of this C++ homework is to give you some critical insights into

object-oriented design.

You are required to solve the same problem using three different approaches to
object-oriented design:
1. An approach that seems very natural at first sight. This approach involves the

use of a diamond hierarchy.

A more flexible approach using mixin classes.

8]

3. And, finally, an approach that uses role-playing classes. This will be the most
sophisticated approach and will involve the use of the RTTI feature of C++.

RTTI stands for Run Time Type Identification.

Your goal is to design an object-oriented system that could be used in a university
for registering stmidents for courses, for keeping track of what teachers are teach-
ing which courses, etc. Your program should make provision for the following

classes:
a) Person
b) Student
c) GraduateStudent
d) GraduateTeachingAssistant
e) Teacher

In addition to whatever else you might want to put into it, the class Person should
hold the following data

string name;
string address;
unsigned long ssn;
Date birthdate;

In addition to inheriting directly (or accessing indirectly) the attributes of Person,
the Student class should contain the following data members:

StudentStatus status;

Department department;
Course* enrolledFor[MaxCoursesForStudent];

int numCourses;

Similarly, in addition to inheriting directly (or accessing indirectly) the attributes
of Person, the Teacher class should contain the following data members:

Rank rank;
double salary;
Department department;
Course* coursesOffered[MaxCoursesForTeacher]:
string* graders|[MaxGraders];
The GraduateStudent class, to be derived from the Student class, should
account for the fact that every graduate student has an advisor and that

a graduate student is not allowed to enroll for low-level courses. The
following attributes are to be defined directly for the GraduateStudent

class:

Teacher advisor;
unsigned short numCourses;

The last class, GradTeachAsst, is to be derived from both the GraduateStudent

class and the Teacher class.

Please keep in the mind the following:

[) All the data members should be in the private section of each class. And
because the data members will be private, you’d need to define and imple-
ment the "get’ and the set’ methods for most if not all the data members.

II) Each class should have a print() method that must behave polymorphi-
cally with respect to the entire hierarchy.

[II) To cope with the problems caused by repeated inheritance, do not forget
about the concept of a virtual base.

The class hierarchy for the first approach will be as shown in Figure 1. Note that
a GraduateTeachAsst will inherit two data members with the same name: the
‘department’ data member from the Student class and the ’department’ data
member from the Teacher class. These are different and distinct data members for
a GradTeachAsst. A graduate teaching assistant can be a student in one depart-
ment and a TA in a different department. Make sure that the constructor for Grad-
TeachAsst reflects this fact. The constructor for GradTeachAsst also has to bear
the primary responsibility for constructing the Person sub-object.

The class hierarchy for the second more flexible approach will be as shown in Fig-
ure 2. The two mixin classes that you must implement are M_QualifiedToTeach
and M_CanBecomeStudent. The third mixin class, M_QualifiedToDoResearch, is
shown to underscore the fact that this kind of a hierarchy is relatively easier to

extend.

And, finally, the class hierarchy for the last approach will look like what’s shown
in Figure 3. Note the nature of the association link between the class Person and
the class UniversityMember. A Person now contains an aggregation of the
UniversityMember objects. Each UniversityMember object represents a role,
which can be a Student role, a Teacher role, etc. There will be only one active

role at one time.

Person

RN

Student

T

.
GradStudent l

Stucle s ﬁ"utu{ g'taTuj o

QT@T«.{S = Rllfnue 3

cout << Stutug << emd! ; [/ ©

Cont << $STaTus Labels [§Tafu$] ((5‘45{{}

Teacher

/

N

v 'f"((/"ffme'(

GradTeachAsst

Figure 1

M_QualifiedToTeach

T

Teacher

RS

1%

M_CanBecomeStudent

Person

M_Qua\ﬁfied ‘130D,Q_Re$earch

—

Student

Researeh-Asst_

e

sz

GraduateStudent

!

A

GradTeachAsst

| g

G@dR&seath;A/sgt

—

\\

(8PN R 24850

Figure 2

Person

PlaysRole>

<forWhom

UniversityMember

AN

!

Student

GraduateStudent

Teacher

Res Ter

Figure 3

(vod TA © has 2 veles {

C7)’Aﬂ(u TC g(l«\ﬁ(&w t

Téa d/,e ¥

	1
	2
	3
	4
	5
	6

